Untersuchungen im Zweistoff Li₂0—GeO₂

Kurze Mitteilung

Von

A. Wittmann und Elisabeth Modern

Aus den Instituten für Physikalische Chemie der Technischen Hochschule und der Universität Wien

(Eingegangen am 12. Februar 1965)

Die röntgenographischen Untersuchungen über Alkaligermanate werden am Zweistoff ${\rm Li_2O--GeO_2}$ fortgesetzt. In der Literatur scheinen Angaben über wasserfreie Lithiumgermanate folgender Zusammensetzung auf: ${\rm Li_4GeO_4}^{1-5}$, ${\rm Li_6Ge_2O_7}^4$, ${\rm Li_2GeO_3}^{1-4}$, 6 , ${\rm Li_6Ge_8O_{19}}^4$ und ${\rm Li_2Ge_7O_{15}}^4$. Strukturchemisch ist dagegen lediglich das Lithium-metagermanat charakterisiert 7 . Von den anderen genannten Verbindungen liegen nur d-Werte aus Pulveraufnahmen vor. Weitere Arbeiten beschäftigen sich mit Lithiumgermanatgläsern 8 und -schmelzen 9 .

Ziel der Untersuchung war die kristallchemische Erfassung der am Aufbau des Systems Li $_2$ O—GeO $_2$ beteiligten Verbindungen durch Einkristallaufnahmen. Zur Darstellung der Lithiumgermanate wurden entsprechende Pulvermischungen von Li $_2$ CO $_3$ und GeO $_2$ (Quarzform) im Platintiegel zusammengeschmolzen. Alkalireiche Schmelzen erstarren sofort kristallin; Ansätze mit über 65 Mol $_0$ GeO $_2$ können nach Abschrekken auch als Glas erhalten werden. Wie in Tab. 1 angegeben, gelang die Isolierung von Einkristallen teilweise aus den erstarrten Schmelzen (S), zum andern aus den getemperten Gläsern (T).

¹ W. Pugh, J. Chem. Soc. [London] **1926**, 2828.

² R. Schwarz, Ber. dt. chem. Ges. **62**, 2477 (1929).

³ P. P. Budnikow und S. G. Tresswjatski, Dokl. Akad. Nauk SSSR 99, 761 (1954).

⁴ M. Krishna Murthy und J. Ip, J. Amer. Ceram. Soc. 47, 328 (1964).

⁵ Naohiro Soga, J. Amer. Ceram. Soc. 47, 469 (1964).

⁶ R. Schwarz und F. Heinrich, Z. anorg. allgem. Chem. 205, 43 (1932).

⁷ H. Hahn und U. Theune, Naturwissensch. 44, 33 (1957).

⁸ M. Krishna Murthy und J. Ip, Nature [London] **201**, 285 (1964).

⁹ E. F. Riebling, J. Chem. Physics **39**, 1889 (1963).

Aus Einkristallaufnahmen konnten so erstmals Elementarzelle und Symmetrie für folgende Verbindungen bestimmt werden:

Zusammen- setzung	Gitterparameter [Å]*			β	d_{\exp}	$d_{ m R\ddot{o}}$	z	Wahrscheinl.	Isolierung
	а	ь	e		[g/cm³]			Raumgruppe	der Einkristalle
Li ₄ SiO ₄	5,25	6,15	5,33	91°	2,40	2,31	2	$\mathrm{C}^2_{2\mathrm{h}}$	s
$\mathrm{Li}_4\mathrm{GeO}_4$	5,36	6,03	5,34	93°	3,15	3,13	2	C_{2h}^{2n}	\mathbf{s}
$Li_6Ge_2O_7$	8,05	5,32	14,18	$92,5^{\circ}$	3,33	3,36	4	$\mathrm{C}^{5}_{2\mathrm{h}}$	\mathbf{s}
$\text{Li}_2\text{Ge}_4\text{O}_9$	9,30	4,66	15,89		4,35	4,32	4	$\mathbf{D_{2h}^{8}}$	${f T}$
$\text{Li}_4\text{Ge}_9\text{O}_{20}$	12,39	8,04	7,49	91°	4,39	4,45	2	$\mathrm{C}^3_{2\mathfrak{h}}$	\mathbf{s}
$\mathrm{Li_2Ge_7O_{15}}$	7,33	16,68	9,72		4,33	4,26	4	$\mathbf{D}_{\frac{1}{2},1}^{\frac{1}{1}4}$	$_{\mathrm{S,T}}$

Tabelle 1

Auf Grund der guten Übereinstimmung von pyknometrischer und Röntgendichte ist die Zusammensetzung der einzelnen Verbindungen gesichert. Demnach treten gegenüber obigen Literaturangaben das Lithiumtetragermanat Li₂Ge₄O₉ und das Lithium-enneagermanat Li₄Ge₉O₂₀ zusätzlich auf. Aus dem Vergleich der früher mitgeteilten d-Werte mit den aus Einkristallaufnahmen gewonnenen Daten können nunmehr, abgesehen vom bekannten Metagermanat Li₂GeO₃, auch die Verbindungen Li₄GeO₄, Li₆Ge₂O₇ und Li₂Ge₇O₁₅ hinsichtlich Existenz und Zusammensetzung bestätigt werden. Dagegen handelt es sich, wie die Analyse der aus einer Zählrohraufnahme errechneten d-Werte⁴ zeigt, bei der als "3 Li₂O·8 GeO₂" formulierten Verbindung um ein Gemenge, bestehend aus Li₂GeO₃, Li₂Ge₄O₉ und geringen Anteilen Li₂Ge₇O₁₅.

Die Aufstellung enthält ferner die Gitterparameter des gleichfalls auf dem Schmelzwege hergestellten Li₄SiO₄. Wie bei Li₂SiO₃ und Li₂GeO₃^{7, 10} dürfte auch bei den Orthoverbindungen Li₄SiO₄ und Li₄GeO₄ sehr enge Verwandtschaft (möglicherweise Isotypie¹¹) vorliegen.

Weitere röntgenographische und insbesondere thermochemische (DTA) Ergebnisse sollen später ausführlich mitgeteilt werden.

Herrn Prof. Dr. H. Nowotny, Wien, danken wir bestens für die wohlwollende Förderung dieser Arbeit. Wir sind ferner der Fa. Owens, Illinois für ihre Unterstützung sehr verbunden.

^{*} Gitterparameter aus Einkristallaufnahmen (unkorrigiert).

¹⁰ A. N. Lasarew und T. F. Tenischewa, Optika i Spektroskopija 13, 708 (1962).

¹¹ H. Strunz, Naturwissensch. 47, 154 (1960).